
Paper #85

Algorithm 1 Algorithm to learn the weights of P-SUQR and its variations in
repeated Stackelberg games
INPUT: Data from R rounds: D1, D2, ... , DR.
OUTPUT: Learned weights (δp, γp, ω1, ω2, ω3, ω4).
1: for r=1 to R do
2: Randomly divide the collected data Dr into 1 training (Trr) and 1 test

(Ter) set.
3: Take the training samples (Trr) and randomly divide it into K training

(kTrvr) and validation (kV alr) splits (1 ≤ k ≤ K).
4: end for
5: Consider a range of values for both δ and γ (Eqn. 6 in the paper).
6: Discretize each range and consider all possible {δ , γ} pairs in that range.

Let there be M such pairs.
7: for i=1 to M do
8: for k=1 to K do
9: Given training splits kTrv1, kTrv2, ... , kTrvR, learn the weights

kω=(kω1, kω2, kω3, kω4) of Eqn. 10 in the paper by using MLE to
maximize the sum of log-likelihoods over all such training splits [1].

10: Predict using the learned weights kω on the corresponding validation
splits kV al1, kV al2, ... , kV alR.

11: Calculate the prediction errors kErr1, kErr2, ... , kErrR on the vali-
dation sets kV al1, kV al2, ... , kV alR respectively.

12: Calculate the sum of all prediction errors kErr1, kErr2, ... , kErrR

and let it be kErr.
13: end for
14: Calculate the average of all K prediction errors kErr (1 ≤ k ≤ K) and

let that be denoted by AvgErri.
15: end for
16: Let p be the index of the {δ , γ} pair with the minimum AvgErri (i=1 to

M). Choose {δp , γp} as the parameter values of the probability weight-
ing function that best describes the probability weights of the adversary
population.

17: Given training sets Tr1, Tr2, ... , TrR and {δp , γp}, learn the weights
ω=(ω1, ω2, ω3, ω4) of Eqn. 10 in the paper by using MLE to maximize
the sum of log-likelihoods over all such training splits [1]. The final learned
weight set is then (δp, γp, ω1, ω2, ω3, ω4).

1



Table 1: Performance (Squared Errors) of various feature sets
Eqn. 7 Eqn. 8 Eqn. 9 Eqn. 10

P-SUQR ADS1 Algorithm 1 0.1965* 0.2031* 0.1985 0.1025*

P-SUQR ADS1 Non-linear Solver 0.2545 0.2589 0.2362 0.1865

P-SUQR ADS2 Algorithm 1 0.2065* 0.2156* 0.2625 0.1136*

P-SUQR ADS2 Non-linear Solver 0.2546 0.2935 0.3062 0.1945

To test the performance of Algorithm 1 against a non-linear solver (Microsoft
Excel’s Generalized Reduced Gradient (GRG) nonlinear solver function), we
learn the weights of the four behavioral models (Eqn. 7 to 10 in the paper) us-
ing both Algorithm 1 and our non-linear solver. We divided the first round data
for the experiment with P-SUQR on ADS1 into 10 random train-test splits. We
then computed the sum of squared errors (SE) of predicting the attack probabil-
ity for each of the test splits and for each of the feature combinations using the
weights learned by Algorithm 1 and the non-linear solver. We report the average
SE for both the weight learning approaches on all the feature combinations in
Table 1. Results accompanied by * imply significant differences in performance
of Algorithm 1 as compared to the non-linear solver. Thus, Algorithm 1 is more
efficient in learning model weights as compared to a non-linear solver.

References
[1] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, and M. Tambe. Analyzing the

effectiveness of adversary modeling in security games. In AAAI, 2013.

2


